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Self-dual gravity revisited
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Abstract. Reconsidering the harmonic space description of the self-dual Einstein equations, we
streamline the proof that all self-dual pure gravitational fields allow a local description in terms
of an unconstrained analytic prepotential in harmonic space. Our formulation yields a simple
recipe for constructing self-dual metrics starting from any explicit choice of such prepotential;
and we illustrate the procedure by producing a metric related to the Taub-NUT solution from
the simplest monomial choice of prepotential.

PACS numbers: 0420C, 0420J

1. Introduction

Many years ago Penrose [1] pointed out that the twistor transform in flat space [2]
remarkably yielded itself to a deformation to curved space, providing a construction (in
principle) of the general self-dual solution of the Einstein equations. Several classes of
solutions have been explicitly constructed using the twistor technique (see, e.g. [3]). Further
classes of explicit self-dual metrics have been found by finding classes of particular solutions
to the second-order partial differential equation to which Plebanski [4] reduced the self-dual
Einstein equations (see, e.g. the review [5] for details of this approach).

The aim of this paper is to describe an alternative version of the ‘curved twistor
construction’ of local solutions using the harmonic space description. Harmonic spaces
were originally devised [6] as tools for the construction of unconstrained off-shellN = 2
andN = 3 supersymmetric theories. This involved the ‘harmonization’ of the internal
unitary automorphism groupsG of the Poincaŕe supersymmetry algebra, i.e. the inclusion of
harmonics on some coset ofG as auxiliary variables; quantities in conventional superspace
being recoverable as coefficients in a harmonic decomposition. Subsequent applications
have involved harmonic spaces in which the rotation group (rather than some internal
symmetry group) is ‘harmonized’, i.e. these harmonic spaces are cosets of the Poincaré
group by a subgroupH of the rotation group. Ordinary four-dimensional space, recall,
is the coset of the Poincaré group by theentire rotation group, so these harmonic spaces
are basically an enlargement of four-dimensional space by the coset of the rotation group
by H . Conventional four-dimensional fields are recoverable from fields in such harmonic
spaces by performing an expansion in the harmonics on the coset space. Such harmonic
spaces are basically manifestly covariant versions of twistor spaces [7]; and they can
be used to construct explicit local solutions by reformulating the Penrose–Ward twistor
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transform in harmonic space language. Moreover, just like twistor spaces, they are amenable
to supersymmetrization. Many four-dimensional integrable systems have hitherto yielded
themselves to this harmonic-twistor method of describing the general solution: the Yang–
Mills self-duality equations [2, 8–10], all their supersymmetric extensions [11], and the full
N = 3 super-Yang–Mills equations [12]. Twistor theory, moreover, affords adaptation to
curved spaces (reviewed in e.g. [13]). Specifically, it yields a method of describing self-
dual solutions of Einstein equations (with or without a cosmological constant [14]). The
harmonic space variant similarly allows itself to be applied to the field equations describing
hyper-K̈ahler [15, 16] and quaternionic spaces [17].

The harmonic-twistor method for self-dual theories uses a presentation of the equations
in a harmonic space with S2 harmonics as auxiliary variables; and the essence of this
version of the twistor transform is a transformation to a system of coordinates, an ‘analytic’
frame, in which an invariant ‘analytic’ subspace exists and in which the equations take
the form of Cauchy–Riemann-like (CR) equations. The method, reviewed in, e.g. [18],
therefore encodes the solution of nonlinear equations in certain ‘analytic’ functions (by
which we mean functions depending only on coordinates of the invariant ‘analytic’
subspace). For instance, the Yang–Mills self-duality equationsFµν = 1

2εµνρσFρσ take
the form (see, e.g. [9, 10]) of the following system in harmonic space with coordinates
{x±α ≡ xαau±

a , u
±
a ; u+au−

a = 1 , u±
a ∼ e±iγ u±

a }:
[D+

α ,D+
β ] = 0 = [D++,D+

α ] ,

where D+
α ≡ ∂/∂x−α + A+

α ≡ u+a(∂/∂xαa + Aαa), D++ ≡ u+
a ∂/∂u

−
a . Here α, a are

2-spinor indices and the signs denote the conserved U(1) charge. The harmonicsu±
a

are fundamental SU(2) spinors; any representation of SU(2) allowing presentation as a
symmetrized product of them. Being defined up to a U(1) transformation, these harmonics
parametrize S2 ' SU(2)/U(1). Moreover, since they do so globally, theseu±

a ’s are
much more convenient objects than their Euler angle or stereographic parametrizations,
allowing the avoidance of the Riemann–Hilbert problem. Having written the self-duality
equations in the above harmonic space language, the Frobenius argument allows the crucial
transformation to an ‘analytic’ frame, in which the covariant derivativeD+

α takes the form
of the flat derivative∂/∂x−α, completely trivializing the first commutation relation above;
and in the process shifting all the unsolved (dynamical) data to the harmonic derivative,
which loses its flatness by acquiring a connection:D++ → u+

a ∂/∂u
−a + V ++. This

connectionV ++ then carries all the dynamical information and the equation of motion
for the connectionA+

α is replaced by the Cauchy–Riemann-like analyticity condition:
[D+

α ,D++] = (∂/∂x−α)V ++ = 0. So the general local solution is encoded in an arbitrary
analytic V ++ = V ++(x+α, u±

a ). ‘Integrability’ therefore becomes manifest, though the
problem of constructing specific explicit self-dual vector potentials reduces to that of
inverting the above transformation for any specified analyticV ++.

This method has already been considered as a means of solving self-dual gravity [15],
where the presence of vielbeins as well as connections requires a suitable adaptation of the
above flat-space Yang–Mills strategy. In this paper we reconsider this problem and show
that even in the curved case the essential features of the above strategy can be maintained.
In particular, we show that a special ‘half-flat’ analytic coordinate frame exists in which
two of the four-dimensional covariant derivatives become completely flat; and in which all
the dynamics become concentrated in the covariant harmonic derivativeD++, just as in the
Yang–Mills case, but now in both the connectionand vielbein parts of the latter. All these
parts ofD++, moreover, can be solved for in terms of asinglearbitrary analytic prepotential,
which therefore encodes the general solution of the gravitational self-duality conditions. In
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the next section we discuss the harmonization: the formulation of the self-duality conditions
for the Riemann tensor in harmonic space. Following [15] we then introduce (in section 3)
the class of analytic coordinate frames which are distinguished by the property of having
an invariant analytic subspace and we discuss the corresponding transformation rules in
section 4. We then list (in section 5) the self-duality equations, ‘the CR system’, for the
vielbein and connection fields in these analytic frames. This system has sufficient gauge
freedom, affording the choice (in section 6) of a particular analytic frame, the ‘half-flat’
gauge, in which a great deal of the simplicity of the flat-space (Yang–Mills) construction
outlined above is recovered; and as a consequence (section 7) the general local solution of
the CR system (which in this gauge takes a manifestly Cauchy–Riemann form) follows in
terms of a single arbitrary (i.e. unconstrained) analytic prepotential which encapsulates the
dynamics. Our refinement of the construction of [15] considerably streamlines the procedure
for the explicit construction of self-dual metrics and corresponding spin connections. We
describe this procedure in section 8; and in section 9 we demonstrate it for the particular
case of the simplest non-trivial monomial choice of analytic prepotential which we explicitly
decode to reveal a metric related to the self-dual Taub-NUT solution. In fact, the form of the
metric we obtain is precisely that obtained by the alternative construction of hyper-Kähler
metrics using the harmonic superspace construction [16] ofN = 2 supersymmetric sigma
models, which have hyper-K̈ahler manifolds as target spaces. In section 10 we discuss
the relation to the alternative Plebanski approach [4], requiring solution of a second-order
differential equation. As a byproduct, our method yields a prescription for the production of
solutions to Plebanski’s second ‘heavenly’ equation, though our construction is independent
of this equation and does not require its solution for the construction of self-dual metrics.
By virtue of its generality, our method is a promising one for the explicit construction
of new local solutions to self-dual gravity, for reviews on self-dual gravity see, e.g. [19].
Further, it paves the way towards the solution of self-dual supergravity theories and the
explicit construction of supersymmetric hyper-Kähler manifolds.

Our considerations are good for complexified space or for real spaces of signature
(4, 0) or (2, 2) (with appropriate handling of the latter as a restriction of complexified
space). For concreteness however, we shall deal with the real Euclidean version, with
tangent space (structure) group being the direct product SU(2) × SU(2); the first SU(2)
having Greek spinor indicesα, β, . . ., whereas we denote the second SU(2) by Latin spinor
indicesa, b, . . ., (α, a = 1, 2). The covariant derivativeDαa takes values in the tangent
space algebra and defines the components of the Riemann curvature tensor by virtue of the
commutation relations [20]

[Dβb,Dαa] = εabRαβ + εαβRab,

with

Rαβ ≡ C(αβγ δ)0
γ δ + R(αβ)(cd)0

cd + 1
6R0αβ,

Rab ≡ C(abcd)0
cd + R(γ δ)(ab)0

γ δ + 1
6R0ab,

where round brackets denote symmetrization and, in this spinor notation,C(abcd)(C(αβγ δ))

are the (anti-) self-dual components of the Weyl tensor,R(αβ)(cd) are the components of the
trace-free Ricci tensor,R is the scalar curvature,(0γ δ, 0cd) are generators of the tangent
space gauge algebra. We raise and lower all tangent space indices using the antisymmetric
invariant tensorsεαβ, εab andεαβ, εab, respectively, e.g.εabψb = ψa , εabψ

b = ψa ; ε12 =
1. We take ‘self-duality’ to mean that the Riemann tensor is self-dual, which in spinor
notation means that

Rab = 0.
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By virtue of the above (irreducible) decomposition this is tantamount to the self-duality
of the Weyl tensor (C(abcd) = 0) and the vanishing of both the tracefree Ricci tensor and
the scalar curvature (R(γ δ)(ab) = R = 0). These conditions clearly imply the source-free
Einstein field equations. In the present work we shall restrict ourselves to this case of zero
cosmological constant. Evidently, we may write these self-duality conditions in the form
of the constraints

[Dβb,Dαa] = εabRαβ. (1)

Now, sinceR(γ δ)(ab) = R = 0, we have thatRαβ = C(αβγ δ)0
γ δ. The self-dual part of the

curvature,Rαβ , therefore takes values only in the SU(2) algebra with generators0γδ. This
means that we may work in a ‘self-dual gauge’ (see, e.g. [21]) in which only this half of
the tangent space group is localized: just the SU(2) labelled by indicesα, β, . . ., while the
second SU(2) (indicesa, b, . . .) remains rigid. Correspondingly, the space coordinatexµa

only has one ‘world’ spinor indexµ, the second one being identified with the tangent space
spinor indexa. Covariant derivatives therefore take the form

Dαa = Eµbαa ∂µb + ωaα , (2)

where in this gauge the spin connections take values only in the SU(2) algebra (generators
0δβ) of the local structure group, namely

(ωαa) = ωδαaσ (0
σ
δ ), (3)

a restriction which clearly implies that the curvatures also take values only in this restriction
of the tangent space algebra, i.e. are then automatically self-dual. So with the connection in
the form (3), equation (1) is no longer a constraint on the curvature; and the problem reduces
to that of finding vierbeinsEµbαa satisfying the conditions of zero torsion implicit in (1). This
is the principal difference from the Yang–Mills case, where there are neither vierbeins nor
torsions and the entire problem is that of solving the analogue of (1) as curvature constraints
on the connection (as opposed to torsion constraints on the vierbein).

In the above ‘self-dual gauge’, not only is the curvature automatically self-dual, but since
both connection and curvature are restricted to take values in SU(2) ' Sp(1), the metric
is manifestly hyper-K̈ahler. This way of considering hyper-Kähler spaces, as solutions
of the self-duality conditions (1), may immediately be generalized to higher dimensions.
Equations describing higher(4n)-dimensional hyper-K̈ahler spaces may be obtained by
simply replacing the SU(2) ' Sp(1) indexα in (1) by an Sp(n) one [15]. We shall for now
restrict ourselves, however, to pure self-dual gravity in four dimensions, the treatment of
4n-dimensional hyper-K̈ahler manifolds forn > 1 is evident (see section 10).

2. The self-duality equations in harmonic space

Having an ‘ungauged’ SU(2) part of the tangent space algebra at our disposal, we
‘harmonize’ it by introducingS2 harmonics{u±a; u+au−

a = 1, u±
a ∼ e±iγ u±

a }, wherea is
an SU(2) spinor index and± denote U(1) charges [6]. We begin by defining the covariant
derivatives in thecentral coordinate basis ofharmonic spacethus:

D±
α ≡ D±

α + ω±
α = u±aDαa, D++ = ∂++ = u+

a

∂

∂u−
a

(4)

where the harmonic derivativeD++ is a partial derivative acting only on harmonics and is
connectionless (this being the characteristic feature of this basis).
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The following system in harmonic space is equivalent to the self-duality conditions (1):

[D+
α ,D+

β ] = 0 (5a)

[D++,D+
α ] = 0 (5b)

[D+
α ,D−

β ] = 0 (moduloRαβ) (5c)

[D++,D−
α ] = D+

α . (5d)

We obtain (5a) on multiplying (1) byu+au+b. Conversely, (5b) ensures linearity of
D+
α in the harmonics, so the harmonic (i.e.u+-) expansion of (5a) yields (1) up to possible

torsion terms containingεab, namelyεabT
γ c

αβ Dγ c. (In the flat-space Yang–Mills case, recall,
the relations (5a, b) are equivalent to the self-duality conditions.) To exclude the existence
of such torsion terms we need to include the commutation relations (5c); and (5d) is then
required in order to ensure that in the present central basis theD−

α contain harmonics only
linearly (as in (4)). The system of commutators (5a–d) is then equivalent to the original
self-duality relations (1)†. The system (5) is in fact a Cauchy–Riemann-like (CR) system
[1, 8]. Only the coordinate frame needs to be changed in order to make its CR nature
manifest.

3. The analytic frames

The choice (4) of covariant derivatives corresponds to what we have called thecentral frame
with coordinates{xµ± ≡ xµau±

a , u
±
a }. The system of commutators (5), however, describes

self-duality covariantly, without reference to the particular form (4) ofD++ andD±
α , these

covariant derivatives in general contain connectionsand vielbeins, providing covariance
under both SU(2) local frame transformations and general coordinate transformations
δxµa = τµa(x). In the above central coordinates the equivalence(5) ⇔ (1) is manifest,
however this covariance may be exploited in order to choose an alternative special coordinate
system, the ‘half-flat’ gauge mentioned in the introduction, in which the CR nature of
(5) becomes manifest instead. The latter coordinate system belongs to a select (gauge
equivalent) class ofanalytic frames, which have the distinguishing feature of an invariant
‘analytic’ subspace under general coordinate transformations. We call an object ‘analytic’ if
it is independent of a subset (namely{xµ−

h }) of some new set of coordinates{xµ±
h , u±

a }, with
the invariant ‘analytic’ subspace having ‘holomorphic’‡ coordinatesxµ+

h . Any such new
coordinatesxµ±

h are of course some nonlinear functions of the central frame (or customary
xµa) coordinates and of the harmonicsu±

a :

xµa → x
µ±
h = x

µ±
h (xµau±

a , u
±
a ) . (6)

The necessity of determining theseh-coordinates as (invertible) functions of the central
frame ones is the main novel feature of the curved-space construction and this is the
crucial difference from the flat self-dual Yang–Mills case, where we have simply the linear
relationship of the central coordinatesxµ± = xµau±

a .
In order to have an invariant ‘analytic’ subspace, the functionsx

µ±
h (xµau±

a , u
±
a ) in (6)

are clearly required to have the crucial property that under the mapping (6) the covariant

† In this paper we shall deal only with those covariant derivatives(D±
α ,D++) which enter the system (5); we

shall not use the additional harmonic covariant derivativeD−− on which the discussion of [15] was based.
‡ This terminology, borrowed from complex analysis, is to be understood only in this sense. We take ourxµa, x

µ±
h

to be real coordinates. Appropriate Hermiticity conditions for the harmonics are discussed in the harmonic space
literature [6, 9, 10]. Of course, all coordinates can also be complexified (see [10]).
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derivativesD+
α in (4) contain derivations with respect toxµ−

h only. In general, (6) induces
the mapping:

D+
α → (D+

α x
µ−
h )∂+

hµ + (D+
α x

µ+
h )∂−

hµ,

where∂+
hµ = ∂/∂x

µ−
h , ∂−

hµ = ∂/∂x
µ+
h , so the requirement that only∂+

hµ-terms appear on the
right is tantamount to the condition that the holomorphic coordinates preserve the flat space
relation

D+
α x

µ+
h = 0. (7)

We take this to be thedefining conditionfor analytic frame coordinates. This yields

D+
α = (D+

α x
µ−
h )∂+

hµ ≡ f µα ∂
+
hµ, (8)

where we have defined an analytic frame zweibeinf µα . Having only derivatives with respect
to xµ− on the right, the conditionsD+

α 9 = 0 then imply (for invertible zweibeinf µα ) the
required ‘analyticity’ of9, i.e. the independence ofxµ−

h , ∂+
hµ9 = 0.

On the other hand, the negatively charged derivativesD−
α in (4) contain derivations

with respect to all the new coordinates:

D−
α = −eµα ∂−

hµ + e−−µ
α ∂+

hµ, (9)

where we have defined a further neutral zweibein,

eµα = −D−
α x

µ+
h , (10)

(the minus sign is chosen so as to haveeµα = δµα in the flat-space limit) and a doubly-
negatively charged one

e−−µ
α = D−

α x
µ−
h . (11)

We now come to the harmonic derivative. Being flat in the central coordinates,
D++ = ∂++, it acquires vielbeins in the holomorphic ones:

∂++ → 1++ = ∂++ +H++µ+∂−
hµ + (x

µ+
h +H++µ−)∂+

hµ, (12)

where the vielbeins are defined in terms of the holomorphic coordinates thus:

H++µ+ = ∂++xµ+
h , (13)

H++µ− = ∂++xµ−
h − x

µ+
h . (14)

Note that these vielbeins are defined so as to haveH++µ+ = H++µ− = 0 in the flat-space
limit.

Now, the curvature in (5a) being zero, we may perform an SU(2) structure group
transformation making the covariant derivativesD+

α connectionless, as in the Yang–Mills
case discussed in the introduction. Namely, (5a) implies the existence of an invertible

matrix ϕβ̆β (having inverse(ϕ−1)
β

β̆
; (ϕ−1)

β̆

βϕ
β

ᾰ
= δ

β̆

ᾰ
, ϕ

β̆

β (ϕ
−1)α

β̆
= δαβ ) satisfying the

equations

D+
α ϕ ≡ (D+

α + ω+
α )ϕ = 0 (15)

which imply the pure-gauge form of the connection in terms ofϕ:

(D+
α )

γ

β = D+
α δ

γ

β −D+
α ϕ

β̆

β ϕ
−1γ
β̆

. (16)

We may therefore use a solution of (15) to perform an SU(2) transformation in order to
‘gauge away’ the connection inD+

α :

D+
α → ϕ−1D+

α ϕ = D+
α
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with D+
a as in (8) above. Now, under this transformation, just as in the Yang–Mills case,

the harmonic derivativeD++ acquires a connection:

D++ → D++ = ϕ−1[D++]ϕ ≡ 1++ + ω++, (17)

where

ω++ = ϕ−11++ϕ. (18)

We shall show that in a particular analytic frame the equations implied by the CR system
(5) for the analytic frame vielbeins and connections defined above may be solved (treating
the h-coordinates{xµ±

h , u±
a } as independent variables) in terms of an arbitrary analytic

prepotential. Our strategy will then be to solve (13), (14), (18) forx
µ+
h , x

µ−
h , and ϕ,

respectively, for some specific choice of analytic prepotential (treating, in turn, the central
coordinates{xµa, u±

a } as independent variables). Having determined the latter data, we shall
invert the mapping (6) and obtain the vierbein in (2) explicitly. The self-dual metric will
then afford immediate construction. The problem of the explicit construction will therefore
reduce to that of solving (13), (14), (18) for fieldsH++µ± andω++ determined by some
specified choice of the analytic prepotential.

4. Transformation rules

There exist two kinds of the tangent-space transformations; central frame ones with
local parametersτβα (x

µa) and analytic frame ones with local parametersλᾰ
β̆
(x
µ+
h , u) (we

distinguishλ-transforming indices by a ‘breve’ accent). The matrixϕ is defined up to the
local gauge equivalence

ϕᾰα ∼ τβα (x
µa)ϕ

β̆

β λ
ᾰ

β̆
(x
µ+
h , u). (19)

The connection in (15) does not transform under the analytic transformations parametrized
by λ, these being ‘pregauge’ in the central frame; whereas for the analytic frame connection
ω++ in (18) the tangential transformations parametrized byτ are ‘pregauge’ and therefore
leave this connectioninvariant. Consider some spinorFα, which has tangent transformation

δFα = τβα (x
µa)Fβ.

The parametersτβα (x) being non-analytic, this transformation would not be consistent ifFα
were analytic, i.e. theτ -transformation does not preserve the analytic subspace. However
usingϕ we can pass to a spinor having breved indices,Fᾰ = (ϕ−1)

β

ᾰ
Fβ , Fα = ϕβ̆αFβ̆ , which

has tangent transformations preserving the analytic subspace:

δFᾰ = λ
β̆

ᾰ
(x+
h , u)Fβ̆ .

So ϕ is clearly a bridge taking us from central frame tangent-space indices (α) to analytic
frame tangent-space ones (ᾰ). In the analytic frame we shall use only quantities with
breved tangent-space spinor indices, using as manyϕ’s as are necessary in order to obtain
the suitably transforming quantity. In the CR system (5) therefore, we pass to appropriately
transforming covariant derivatives:

D+
ᾰ

= (ϕ−1)
β

ᾰ
D+
β D−

ᾰ
= (ϕ−1)

β

ᾰ
D−
β .

In gravitation theory the most important transformations are the world ones. For
the central frame coordinates these form the diffeomorphism group with local parameters
τµa(x), i.e. δxµa = τµa(x). In an analytic frame, by definition (see section 3), harmonic
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space diffeomorphisms preserve analyticity, i.e. leave the analytic subspace (the analytic
planes with coordinatesxµ+

h ) of harmonic space invariant. Namely,

δx
µ+
h = λµ+(x+

h , u), (20)

whereas

δx
µ−
h = λµ−(x+

h , x
−
h , u). (21)

The important property being of course thatthe positively charged parameters are analytic,
whereas the negatively charged ones are not, implying that the most general diffeomorphism
preserves the analytic subspace. The harmonics also allow transformation, requiring
consideration of the complexified picture [10]. However we do not need to consider these
transformations since they do not affect the CR system (5). Such transformations, however,
are necessary in the case of non-zero cosmological constant (see [17]).

From the covariance of the covariant derivatives (8), (9), (12) under the transformations
(20), (21), we obtain the following transformation rules for the vielbeins introduced in
section 3:

δf
µ

ᾰ
= f νᾰ ∂

+
hνλ

µ− + λ
β̆

ᾰ
f
µ

β̆
, (22)

δe
µ

ᾰ
= eνᾰ∂

−
hνλ

µ+ + λ
β̆

ᾰ
e
µ

β̆
, (23)

δe
−−µ
ᾰ

= −eνᾰ∂−
hνλ

µ− + e−−ν
ᾰ

∂+
hνλ

µ− + λ
β̆

ᾰ
e
−−µ
β̆

, (24)

δH++µ+ = 1++λµ+, (25)

δH++µ− = 1++λµ− − λµ+. (26)

5. The Cauchy–Riemann system of equations

We now examine the content of the CR system (5) in an analytic frame, i.e. with the
covariant derivatives taking the explicit form

D+
ᾰ

= f
µ

ᾰ
∂+
hµ

D−
ᾰ

= −eµ
ᾰ
∂−
hµ + e

−−µ
ᾰ

∂+
hµ + ω−

ᾰ

D++ = ∂++ +H++µ+∂−
hµ + (x

µ+
h +H++µ−)∂+

hµ + ω++ .

Not all the equations implied by (5) for the vielbein and connection fields in these
covariant derivatives are ‘dynamical’ in character, in the sense of requiring solution for
the determination of the metric. We shall first extract the set of such ‘dynamical’ equations,
the remaining equations basically determining redundant fields.

For the zweibeinf µ
β̆

we have from (5a) the equations

f ν[ᾰ∂
+
hνf

µ

β̆]
= 0. (27)

The vanishing of the torsion coefficients of∂−
hµ in (5c) and (5b) requires the vielbeins

e
µ

ᾰ
andH++µ+, respectively, to beanalytic:

D+
ᾰ
e
µ

β̆
= 0 , (28)

D+
ᾰ
H++µ+ = 0 . (29)
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The vanishing of the curvature in (5b) yields a further analyticity condition; for the
connectionω++,

D+
ᾰ
ω++ = 0 . (30)

The solution of this equation is however not independent of the solution of the previous
two analyticity conditions; the equation

−D++eµ
ᾰ

− D−
ᾰ
H++µ+ = 0, (31)

which is a consequence of the vanishing of the torsion coefficients of∂−
hµ in (5d), provides

an important constraint among the three analytic fieldse
µ

β̆
, H++µ+ andω++. Furthermore,

these fields determineH++µ− by virtue of the equation

D+
ᾰ
H++µ− = D++f µ

ᾰ
, (32)

which arises from the requirement of the vanishing of the torsion coefficients of∂+
hµ in

constraint (5b).
In order to solve self-dual gravity (1), it suffices to solve the above set of equations

(27)–(32). The remaining equations from (5) are basically conditions determining consistent
expressions for the fieldse−−µ

β̆
andω−

ᾰ
, whose determination is actually not necessary in

order to find self-dual metrics. These fields represent the same degrees of freedom as the
fields {f µ

ᾰ
, e
µ

ᾰ
, H++µ±, ω++} and therefore represent redundant degrees of freedom. The

field e−−µ
ᾰ

is determined by the equation following from the equality of the coefficients of
∂+
hµ in (5d), namely,

D++e−−µ
ᾰ

= f
µ

ᾰ
+ D−

ᾰ
(H++µ− + x

µ+
h ). (33)

The vanishing of torsion coefficients of∂+
hµ in (5c) yields

D+
ᾰ
e
−−µ
β̆

= D−
β̆
f
µ

ᾰ
, (34)

which together with the condition obtained from the requirement that the antisymmetric part
of the curvature in (5c) vanishes, i.e.

D+
[ᾰω

−
β̆]

= 0, (35)

determinesω−
β̆

, which satisfies the final equation contained in (5), namely the vanishing of
the curvature in (5d)

D++ω−
ᾰ

− D−
ᾰ
ω++ = 0, (36)

automatically, by virtue of (33).

6. The ‘half-flat’ gauge

The set of fields satisfying the system of equations listed in the previous section is actually
highly redundant, possessing the gauge invariances (22)–(26). The system may therefore

be reduced by fixing the parametersλβ̆
ᾰ
(x+
h , u), λ

µ+(x+
h , u), andλµ−(x±

h , u), and thereby
specifying local coordinates. Remarkably, in a suitable coordinate gauge, this system of
equations becomes manifestly soluble. Firstly, sincee

µ

ᾰ
is analytic (28), the gauge invariance

(22) with analytic parametersλβ̆
ᾰ
, allows us to choose local coordinatesxµ+

h such thateµ
ᾰ

is
a unit matrix. Furthermore, the torsion constraint (5a) essentially says, by Frobenius’
integrability theorem, thatD+

ᾰ
is gauge-equivalent to the partial derivative∂+

ᾰ
. There

therefore exists a coordinate gauge in which (27) is solved by virtue of the zweibeinf
µ

ᾰ
also
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taking the form of a unit matrix. Choosing such a gauge in whichD+
ᾰ

is completely flat is
therefore tantamount to changing coordinates (using gauge degrees of freedom parameterized
by λµ− (23)) thus: xµ−

h → yµ− = yµ−(xν+h , xν−h ), xµ+
h → yµ+ = yµ+(xν+h ), such that in

the old coordinates

f
µ

ᾰ
= ∂x

µ−
h

∂yᾰ− , (37)

which manifestly solves (27) since

∂xν−h
∂y [ᾰ−

∂

∂xν−h

∂

∂yβ̆]− x
µ−
h = ∂

∂y [ᾰ−
∂

∂yβ̆]− x
µ−
h ≡ 0.

With this zweibeinD+
ᾰ

is clearly flat in the new coordinates:

D+
ᾰ

= ∂

∂yᾰ− ,

the constraint (5a) becoming an identity and Frobenius’ theorem becoming manifest. We
shall henceforth use this gauge,

f
µ

ᾰ
= δ

µ

ᾰ
, e

µ

ᾰ
= δ

µ

ᾰ
, (38)

although we shall continue to call the coordinates in this particular gaugex
µ±
h rather

than yᾰ±. In this special ‘half-flat’ gauge the distinction between world and tangent
indices has evidently been eliminated and only the set of vielbein and connection fields
{H++µ±, e−−µ

ᾰ
, ω++, ω−

ᾰ
} remain, of which, as we shall see, those contained inD++, namely

{H++µ±, ω++} contain all the dynamical information. This Yang–Mills-like feature is the
distinguishing one of this particular analytic frame.

In this gauge residual gauge transformations have parameters constrained by relations
from (22), (23), namely

∂−
hᾰ
λµ+ + λ

µ

ᾰ
= 0, ∂+

hᾰ
λµ− + λ

µ

ᾰ
= 0.

So the residual diffeomorphism parametersλµ±(x+
h , u) are no longer arbitrary but are

constrained by the relations

∂−
hµλ

µ+ = 0, ∂+
hµλ

µ− = 0 ,

since the tangent parametersλµ
ᾰ

are traceless. It follows that the thus constrainedλµ+ can
be expressed in terms of an unconstrained doubly chargedanalytic parameterλ++:

λµ+
res(x

+
h , u) = ∂

µ−
h λ++(x+

h , u) . (39a)

These diffeomorphism parameters in turn determine the Lorentz ones, the residual tangent
transformations actually being induced by the world ones:

(λ
µ

ᾰ
)res = −∂−

hᾰ
λµ+

res(x
+
h , u) . (39b)

As for the remainingλµ− transformations, these have parameters:

(λµ−)res = ∂−
hνλ

µ+(x+
h , u)x

ν−
h + λ̃µ−(x+

h , u) , (39c)

where λ̃µ−(x+
h , u) is an arbitraryanalytic parameter†. The remaining vielbeinsH++µ+,

H++µ−, and e−−µ
ᾰ

still transform according to (25), (26), (24), respectively, with the
parameters being the residual ones (39).

† When considering self-dual gravity in [15] the alternative gauge condition

1++λµ− = λµ+

corresponding to the preservation of the flat space relation∂++xµ− = xµ− was adopted. This condition completely
fixes the gauge parametersλµ−. We choose to avoid this lack of freedom, preferring the more convenient gauge
(38).
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7. The analytic frame solution

We shall now show that in the ‘half-flat’ gauge (38) with covariant derivatives taking the
form

D+
ᾰ

= ∂+
hᾰ

D−
ᾰ

= −∂−
hᾰ

+ e
−−µ
ᾰ

∂+
hµ + ω−

ᾰ
(40)

D++ = ∂++ +H++µ+∂−
hµ + (x

µ+
h +H++µ−)∂+

hµ + ω++ ,

the system of equations (27), (28), or equivalently the self-duality system (5) becomes
manifestly soluble. Moreover, our main claim is that:

An unconstrained analytic prepotential,L+4, encodes all local information on self-dual
gravity.

To prove this claim we begin by recalling that in the ‘half-flat’ gauge the difference
between world and tangent indices has become rather conventional, all essential information
about the manifold having moved to the vielbeins and connections inD++. Equations (27),
(28) clearly drop out in this gauge, leaving, from the dynamical set (27)–(32), only the
analyticity conditions forH++µ+ andω++ (29), (30) and the relationships (31) and (32).
These four equations, and therefore the analytic frame self-duality conditions, can be
consistently solved in terms of a single arbitrary analytic prepotential of charge+4. To
prove that such a prepotential exists (at least locally) we begin with an arbitraryanalytic
H++β̆+ (satisfying (29)). The relation (31) then yields an expression for the harmonic
connection which is manifestly analytic, automatically satisfying its equation of motion
(30),

ω
++β̆
ᾰ

= ∂−
hᾰ
H++β̆+. (41)

Now the requirement of tracelessness of this connection yields a constraint onH++β̆+ which
has a local solution in terms of the sought unconstrained analytic prepotentialL+4, i.e.

H++µ+ = ∂
−µ
h L+4 = εµν

∂L+4

∂x+ν
h

. (42)

The transformation rule (25) forH++µ+ induces the gauge transformation

δL+4 = 1++λ++ + ∂
µ−
h λ++∂−

hµL+4 = ∂++λ++, (43)

whereλ++ is the unconstrained analytic gauge parameter in (39a). So prepotentials differing
by the harmonic partial derivative of an analytic function correspond to gauge equivalent
solutions of the CR system. Equation (32) remains and yields a relationship, using (41),
between the two vielbeins inD++:

∂+
hᾰ
H++β̆− = ω

++β̆
ᾰ

= ∂−
hᾰ
H++β̆+ . (44)

Integrating this equation, we obtain

H++β̆− = xᾰ−
h ∂−

hᾰ
H++β̆+ = xᾰ−

h ∂−
hᾰ
∂

−β̆
h L+4, (45)

up to an arbitrary analytic function absorbed by the gauge freedom (26).
We can therefore determine all the required fields (H++µ± and ω++) consistently,

i.e. solve the dynamical content of (5) in terms of the unconstrained (i.e. arbitrary) analytic
prepotentialL+4. For the sake of completeness we show in appendix A that all the other
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equations from (5) are also solved in terms ofL+4 and determine the remaining analytic
frame fields (e−−µ

ᾰ
, ω−

ᾰ
) as functionals ofL+4.

The conventional vierbeins and connections in the central basis may now be constructed
according to the procedure we give in the next section. The correspondence between self-
dual metrics and prepotentialsL+4 is, however, not unique, since prepotentials related
by the gauge transformation (43) correspond to equivalent metrics. We may fix this
freedom by using thenormal gauge[15] in which L+4 has no explicit dependence on
u+
a , i.e. L+4 = L+4(x

µ+
h , u−

a ). In other words any explicitu+-dependence may always be
gauged away using the freedom (43). Consider the harmonic expansion of an arbitrary
prepotential having explicitu+-dependence,

L+4(x+
h , u

+, u−) = L+4
normal(x

+
h , u

−)+
∑
n,m

u+a1 . . . u+anu−b1 . . . u−bmf 4−n+m
(a1...anb1...bm)

(x+
h ) ,

(46)

where the coefficientsf 4−n+m
(a1...anb1...bm)

(x+
h ) are monomials of degree(4− n+m) in x1+

h , x2+
h .

Now every term in the sum on the right may easily be shown to be a harmonic partial
derivative of an analytic function, so the entire sum has the form∂++λ++(x+

h , u
+, u−),

which may be absorbed by the gauge freedom (43), yielding the normal gauge form ofL+4.

8. The reconstruction of vierbeins and connections in the central frame

As we have seen, the analytic prepotentialL+4 encodes all the analytic basis dynamical
information. But how does one extract the self-dual metric in the original central basis
from it? We now outline the procedure for doing this starting from some specified analytic
prepotentialL+4.

Step A. From (42) and (45) obtain the vielbeins ofD++:

H++µ+ = ∂
−µ
h L+4

H++µ− = xᾰ−
h ∂−

hᾰ
∂

−µ
h L+4.

Step B. Consider (13) as equations for the holomorphic coordinatesx
µ+
h :

∂++xµ+
h = ∂

−µ
h L+4. (47)

Integrating these first-order equations, findxµ+
h as functions of thecentral frame coordinates

xµ±(≡ xµau±
a ) and the harmonics.

Step C. Having obtainedxµ+
h , similarly solve (14), i.e.

∂++xµ−
h = x

µ+
h + xᾰ−

h ∂−
hᾰ
∂

−µ
h L+4 (48)

in order to determinexµ−
h as a function of the central frame coordinates.

Step D. From (41) obtain the connection ofD++:

ω
++β̆
ᾰ

= ∂−
hᾰ
∂

−β̆
h L+4, (49)

and using the results of steps B and C, express it explicitly in terms of central coordinates.
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Step E. With theω++ obtained in step D, solve equation (18) rewritten in the central frame
∂++ϕ = ϕω++, i.e.

∂++ϕβ̆α = ϕᾰα ∂
−
hᾰ
∂

−β̆
h L+4 (50)

in order to obtain the bridgeϕ in central coordinates.

Step F. Using results of steps B and C evaluate the partial derivatives∂xν±/∂xµ−
h .

The above data affords the immediate construction of explicit self-dual vierbeins,
metrics, and connections as follows:

Step G. Multiply the bridgeϕ obtained in step E with one of the matrices of coordinate
differentials from step F, and extract the self-dual vierbein from the relation

ϕνα
∂xµ−

∂xν−h
= u+aEµbαa u

−
b , (51)

using the completeness relationu+au−
b − u−au+

b = δab . Invert this vierbein and obtain the
self-dual metric

ds2 = εacεαβE
αa
µbE

βc

νd dxµb dxνd . (52)

The proof of the relation (51) is as follows. The central frame vierbeins are given by
the equation

(ϕ−1)αᾰu
+aEµbαa

∂xν−h
∂xµb

= f νᾰ

which follows from equations (2), (4), (8) and (17). Fixing the gauge (38) and introducing
quantities

Zµα = u+aEµbαa u
−
b , Zµ++

α = u+aEµbαa u
+
b (53)

we obtain the system of equations

Zµα
∂xν−h
∂xµ− + Zµ++

α

∂xν−h
∂xµ+ = ϕνα,

Zµα
∂xν+h
∂xµ− + Zµ++

α

∂xν+h
∂xµ+ = 0

which have solution

Zµα = ϕνα
∂xµ−

∂xν−h
, Zµ++

α = ϕνα
∂xµ+

∂xν−h
. (54)

By the construction (53), as functions of the central frame coordinates{xµa = xµ+u−a −
xµ−u+a, u±

a }, these are bilinear in the harmonics, affording immediate extraction of the
vierbeinsEµbαa = E

µb
αa (x

νc) in the customary space.

Step H. The connectionω+
α is given in terms of the bridge by the formula (16), which

therefore yieldsωαa = ωαa(x
µb), sinceω+

α , as a function of central frame coordinates
{xµa, u±

a }, is by construction (see (4)) linear in the harmonicsu+a.
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Therefore, extract the self-dual spin connection from the central frame formula

(ω+
α )

γ

β = (ωαa)
γ

βu
+a

= −D+
α ϕ

β̆

β (ϕ
−1)

γ

β̆

= −ϕγ̆αD+
γ̆
ϕ
β̆

β (ϕ
−1)

γ

β̆

= −ϕγ̆α
∂ϕ

β̆

β

∂x
γ̆−
h

(ϕ−1)
γ

β̆

= −
(
Z++µ
α

∂ϕ
β̆

β

∂xµ+ + Zµα
∂ϕ

β̆

β

∂xµ−

)
(ϕ−1)

γ

β̆
. (55)

The thus constructed connection(ωαa)
γ

β is also a solution of an SU(2) self-dual Yang–
Mills theory in a curved space with metric (52). This is obvious in our formulation since this
ω+
α , by construction, satisfies (5a, b), which for this connection are precisely theYang–Mills

CR conditions in a self-dual background. This formulation therefore makes manifest the
observation of [22] that the spin connection(ωαa)

γ

β corresponding to a self-dual gravitational
solution is such a self-dual Yang–Mills vector potential.

9. An example

We now explicitly illustrate the procedure outlined above for the simplest example ofL+4:
a monomial of fourth degree in the holomorphic coordinates:

L+4 = gx1+
h x1+

h x2+
h x2+

h , (56)

whereg is a dimensionful parameter. This is invariant under the symmetry transformation

x1+′
h = eγ x1+

h , x2+′
h = e−γ x2+

h , (57)

which plays an important role in the explicit solubility of this example. The simplest
quantity invariant under this symmetry isρ++ ≡ x1+

h x2+
h , in terms of which this choice of

L+4 can be expressed.

Step A. From this prepotential, we get the harmonic vielbeinsH++µ+ using (42)

H++µ+ = εµν
∂L+4

∂x+ν
h

= 2gρ++(σ3)
µ
ν x

ν+
h , (58)

whereσ3 is the Pauli matrix. Using these expressions, we find from (45) that

H++µ− = x−ᾰ
h ∂−

hᾰ
H++β̆+ = 2g(σ3)

µ
ν (x

ν−
h ρ++ + xν+h (x1−

h x2+
h + x1+

h x2−
h )). (59)

It is worth emphasizing once again thatH++µ− are non-analytic, they contain the
antiholomorphic coordinatesxµ−

h explicitly.

Step B. From the definition (13) and having the explicit form forH++µ+ (58) we can
write down the equations for the holomorphic coordinatesx

µ+
h :

∂++xµ+
h = 2gρ++(σ3)

µ
ν x

ν+
h . (60)
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It follows from these equations that the invariantρ++ is actually the conserved current
corresponding to the symmetry (57), in the sense that

∂++ρ++ = 0. (61)

Due to this conservation law, equations (60) are effectivelylinear equations having solutions

x1+
h = e2gρx1+, x2+

h = e−2gρx2+, (62)

whereρ andxµ+ are solutions of the equations

∂++ρ = ρ++ , (63)

∂++xµ+ = 0 . (64)

The latter equation allows the natural identification of the central frame coordinates from
the harmonic expansionxµ+ = xµau+

a ; and using (62)ρ++ may be seen to have the same
form in these central coordinates as in holomorphic ones, i.e.ρ++ = x1+

h x2+
h = x1+x2+.

Now (63) may be seen to have the following solution in terms of central coordinates:

ρ = 1
2(x

1+x2− + x1−x2+),

up to the addition of a solution of the homogeneous part of (63), which can clearly be
absorbed by redefinition ofx+µ, which also satisfies a homogeneous equation, (64). The
expressions (62) are therefore indeed the required ones for the holomorphic coordinatesx

µ+
h

in terms of the central ones.

Step C. The equations for the negatively charged coordinates are given by (14), which we
solve using the positively charged coordinates already found above. Inserting the explicit
expressions (59) we have

∂++x1−
h = (1 + 2gx1+

h x2−
h + 4gx1−

h x2+
h )x1+

h ,

∂++x2−
h = (1 − 2gx1−

h x2+
h − 4gx1+x2−

h )x2+
h ,

(65)

equations linear inxµ−
h as they stand. Moreover, together with (62), they imply that

∂++(x1−
h x2+

h + x1+
h x2−

h ) = 2x1+
h x2+

h ,

so comparing with (63) and using the linearity ofxµ± in the harmonics, we may make the
identification

ρ = 1
2(x

1+x2− + x1−x2+) = 1
2(x

1+
h x2−

h + x1−
h x2+

h ). (66)

So ρ, like ρ++, has the same form in both coordinate systems. We may now present the
equations in the form of a system linear in the holomorphic coordinates,

∂++x1−
h = x1+

h + 4gρx1+
h + 2gρ++x1−

h ,

∂++x2−
h = x2+

h − 4gρx2+
h − 2gρ++x2−

h

having solution:

x1−
h = x1−(1 + 2gx1+x2−)e2gρ, x2−

h = x2−(1 − 2gx1−x2+)e−2gρ. (67)

Now sinceρ is the same in both central and holomorphic coordinates, the relationships (62)
and (67) are readily invertible, yielding the following expressions for the central coordinates
as functions of the holomorphic ones:

x1+ = e−2gρx1+
h , x2+ = e2gρx2+

h

x1− = e−2gρ(x1−
h − 2gρ−−x1+

h ), x2− = e2gρ(x2−
h + 2gρ−−x2+

h ),
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where

ρ−− ≡ x1−x2− = 2x1−
h x2−

h

(1 − gr2
h +

√
1 − 2gr2

h + 16g2ρ2)
;

andr2
h ≡ 2(x1−

h x2+
h − x1+

h x2−
h ).

Step D. Using (41) we find the connectionω++ to have the form

ω++ = ∂−
hᾰ
H++β̆+ = e−2gσ3ρω̂++e2gσ3ρ

where

ω̂++ = 2g

(
2x1+x2+ −x2+x2+

x1+x1+ −2x1+x2+

)
≡ 2g(σ3ρ

++ +X++),

whereX++ is the matrix defined in appendix B.

Step E. To find the bridge it is useful to present it in the form,

ϕ = ϕ̂e2gσ3ρ,

whereϕ̂ satisfies, by virtue of (50), the equation

∂++ϕ̂ = 2gϕ̂X++.

Now inserting the ansatẑϕ = ef (r
2)X+−

, where r2 ≡ 2(x1−x2+ − x1+x2−) and X+−

satisfies ∂++X+− = X++ and is given explicitly in appendix B, into the relation
X++ = (1/2g)ϕ̂−1∂++ϕ̂, the functionf (r2) is determined to bef (r2) = −ln(1 − gr2)/gr2,
yielding

ϕ = (1 − gr2)−
1
2 (1 + 2gX+−)e2gσ3ρ, (68)

a result which may also be obtained (and easily checked) simply by linear algebra from
a careful consideration of the algebra (B1) in appendix B. The bridgeϕ is defined by
(50) up to multiplication by a factor whose∂++ derivative vanishes and the unimodularity
requirement, detϕ = 1, yields the normalization in (68).

By virtue of the algebra of the matricesX±∓, X++ described in appendix B, the inverse
bridge may immediately be written down:

ϕ−1 = (1 − gr2)−
1
2 e−2gσ3ρ(1 − 2gX−+) .

Step F. It follows from formulae (65) and (67) that

∂xν+

∂x
µ−
h

= −ge−2gρσ3X++

and that

∂xν−

∂x
µ−
h

= e−2gρσ3

(1 − gr2)

(
1 − g(3 − gr2)X−+)

.

Step G. Substituting the latter expression and (68) in (51) we obtain:

Zµα = ϕνα
∂xµ−

∂xν−h
= (1 − gr2)−

1
2 (1 − gX−+) .
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As expected, the harmonic expansion ofZµα contains only bilinear pieces and the self-dual
vierbein consequently has the form

Eµbαa = (1 − gr2)−
1
2

(
δba − gx2

ax
1b gx2

ax
2b

−gx1
ax

1b δba + gx1
ax

2b

)
having inverse

Eαbµa = (1 − gr2)−
1
2

(
δba(1 − gr2)+ gx2

ax
1b −gx2

ax
2b

gx1
ax

1b δba(1 − gr2)− gx1
ax

2b

)
.

Inserting this in (52), using the parametrizationxµa = (
y −z̄
z ȳ

)
and denotingr2 = 2(yȳ+ zz̄),

we find

ds2 = 2(1 − gr2)(dy dȳ + dz dz̄)+ gr4 (2 − gr2)

(1 − gr2)
σ 2
z , (69)

whereσz is one of the three differential 1-forms [21] related to the Maurer–Cartan forms
on SU(2),

σx = 1

r2
(z̄ dy − y dz̄+ z dȳ − ȳ dz),

σy = 1

r2
(z dy − y dz + ȳ dz̄− z̄ dȳ),

σz = 1

r2
(ȳ dy − y dȳ + z̄ dz − z dz̄).

Settingg = 0 in (69) (corresponding toL+4 = 0) we clearly obtain the flat metric

ds2
flat = 2(dy dȳ + dz dz̄) = dr2 + r2(σ 2

x + σ 2
y + σ 2

z ). (70)

Using the second equality in (70), we obtain precisely the form of the metric obtained using
the harmonic space formulation ofN = 2 sigma models [16], namely

ds2 = (1 − gr2) dr2 + r2(1 − gr2)(σ 2
x + σ 2

y )+ r2

(1 − gr2)
σ 2
z . (71)

This is a form of the self-dual Euclidean Taub-NUT metric. Denoting the parameter
g = 1/4m2, the variable changer2 → 2m(ρ − m) yields the form of the Taub-NUT
metric in, e.g. [21]:

ds2 = ρ +m

4(ρ −m)
dρ2 + (ρ2 −m2)(σ 2

x + σ 2
y )+ 4m2ρ −m

ρ +m
σ 2
z .

Unlike (71), the latter form of the metric is only defined in the domainρ > m; and therefore
does not have a well defined flat limit (m → ∞).

Step H. Substituting derivatives of the central frame coordinates and bridgeϕ from steps E
and F into (55), we obtain

(ω+
1 )

γ

β = −2g(1 − gr2)−
3
2

(
x2+(1 − 1

2gr
2) 0

x1+ −x2+(1 − 1
2gr

2)

)

(ω+
2 )

γ

β = −2g(1 − gr2)−
3
2

(
x1+(1 − 1

2gr
2) −x2+

0 −x1+(1 − 1
2gr

2)

)
,

expressions manifestly linear in the harmonics, allowing us to extract the connection
components (3) immediately:

(ωαa)
γ

β = 2g(1 − gr2)−
3
2

(
(1 − 1

2gr
2)(x2

a , x
1
a ) (0,−x2

a )

(x1
a , 0) −(1 − 1

2gr
2)(x2

a , x
1
a )

)
.
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10. Conclusions and further remarks

We have shown thatall self-dual gravitational fields allow local description in terms of
an unconstrained analytic prepotentialL+4 in harmonic space. The explicit performance
of our construction relies only on the solution of first-order differential equations on S2.
Our method therefore promises to be a fruitful one for the explicit construction of self-dual
metrics.

Whether global characteristics (e.g. topological invariants) and singularity properties of
the manifold can bedeterminedby a prescient choice ofL+4 remains an open question.
The curvature tensor, however, may indeed be evaluated from the analytic frame connection
ω−
β̆

by virtue of

Rᾰβ̆ = ∂+
h(ᾰ
ω−
β̆)
, (72)

or equivalently

C δ̆

ᾰβ̆γ̆
= ∂+

h(ᾰ
ω− δ̆

β̆)γ̆
= ∂+

hᾰ
∂+
hβ̆
e−−δ̆
γ̆

,

where the connectionω−
ᾰ

is determined in terms of the vielbeine−−µ
β̆

, which in turn is

determined in terms ofL+4 (see appendix A). The expression (72), which is by construction
u-independent, immediately yields the manifestly total-derivative form of the Pontryagin
density:

Rᾰβ̆Rᾰβ̆ = ∂+ᾰ
h ∂

+β̆
h e−−δ̆

γ̆
∂+
hᾰ
∂+
hβ̆
e
−−γ̆
δ̆

= ∂+ᾰ
h (∂

+β̆
h e−−δ̆

γ̆
∂+
hᾰ
∂+
hβ̆
e
−−γ̆
δ̆

).

In our framework the fieldsω−
ᾰ

and e−−µ
β̆

are redundant, carrying no additional
dynamical information; all their equations of motion being identically satisfied by virtue
of what we have called the ‘dynamical’ subset of the CR equations. Alternatively, one
could choose to ignore the relations in (5) involvingD++ and attempt instead to solve
the equations fore−−µ

β̆
, which describes the same degrees of freedom. These equations

imply the form (see (A5) in appendix A)e−−γ̆
β̆

= ∂+
hβ̆
∂

+γ̆
h e−4, wheree−4 is a non-analytic

prepotential, which, in this alternative framework, carries all the dynamical information.
Indeed the equation

[D−
α ,D−

β ] = 0, (73)

which completes the algebra of covariant differential operators in (5), and which needs to
be included if one wishes to exclude (5b, d) (this equation is an identity in our framework),
may easily be seen to contain the dynamical equation fore−4,

∂ᾰ+∂−
ᾰ
e−4 + 1

2∂
ᾰ+∂β̆+e−4∂+

ᾰ
∂+
β̆
e−4 = 0 , (74)

as a consequence of the vanishing of the torsion coefficient of∂+
hᾰ

. (These torsion
constraints actually imply that the left-hand side of (74) is equal to some arbitrary analytic
function, which however may be set to zero using a pregauge symmetry ofe−4, namely
δe−4 = xµ−G−3

µ (x
+), for arbitrary analyticG−3

µ .) In the alternative approaches to the
self-dual Einstein equations, which do not introduce the auxiliaryD++ (e.g. [4, 23]), the
dynamics is indeed described by (74) or transformations thereof. The fielde−4 is precisely
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Plebanski’s second ‘heavenly function’ [4], for which (73) is the ‘zero-curvature’ or Lax
representation†. Indeed the contravariant form of the basis (40) with Cartan 1-forms

�µ+ = dxµ+
h

�µ− = dxµ−
h + e−−µ

ν dxν+h

yields the (u-independent) invariant dx+
hν(dx

ν−
h +e−−ν

µ dxµ+
h ), which is precisely the form of

the metric given in [5]. We emphasize, however, that the advantage of introducingD++ and
working with harmonics as independent variables, is that (74) is then automatically satisfied.
If explicit solutions of (74) are for some reason required, they may also be constructed in
our framework from a first-order equation ((A2) in appendix A).

The alternative Monge–Ampère form of Plebanski’s equation [4] corresponds to a
different gauge to (38), i.e. a different choice of analytic frame coordinates; our method
may also be used to construct solutions to that form of Plebanski’s equation. We hope to
return to a discussion of both of Plebanski’s equations in the harmonic space setting in a
future publication.

The self-duality conditions are well known to be differential equations whose solutions
are automatically hyper-K̈ahler metrics. Our construction of solutions generalizes to 4m-
dimensions, where hyper-Kähler metrics [15] may similarly be thought of as solutions to
the generalized self-duality conditions [24]

[DBb,DAa] = εabRAB, (75)

whereA is an Sp(m) index anda, as above, is an Sp(1) index. These equations manifestly
break the 4m-dimensional rotation group to Sp(m) × Sp(1). Delocalizing the Sp(1) yields
connections and curvatures manifestly taking values in the Sp(m) subalgebra. In other
words, the holonomy group is Sp(m), so (75) indeed describe higher-dimensional hyper-
Kähler spaces. Our entire construction generalizes to these higher-dimensional cases on
replacing the Sp(1) indicesα, β by Sp(m) indicesA,B. The further generalization with
indicesA,B in (75) considered as ‘superindices’ of the superalgebra OSp(N |m), yields
constraints in chiral superspace which may be thought of as equations forN -extended
supersymmetric(4m|2N)-dimensional hyper-K̈ahler spaces. In this supersymmetric case,
our construction requires suitable modifications in order to accommodate the intricacies
of superalgebras. The casem = 1 corresponds toN -extended supersymmetric self-
dual supergravity. In fact, the present work was motivated by our initial attempts to
supersymmetrize the harmonic-twistor construction for self-dual gravity and the construction
in this paper is indeed amenable to supersymmetrization, yielding a general solution of all
extended self-dual Poincaré supergravity theories. This is under preparation for publication.
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Appendix A. The redundancy of the degrees of freedom inD−
α

In this appendix we prove the claim in section 7 that the fieldse
−−µ
β̆

andω−
ᾰ

are redundant
degrees of freedom and are indeed entirely determined in terms of the ‘dynamical’ fields
H++µ+ andω++, which in turn are determined by the analytic prepotentialL+4.

Equation (33) reduces to

D++e−−µ
ᾰ

= −∂−
hᾰ
H++µ− + e−−ν

ᾰ
∂+
hνH

++µ−. (A1)

Now recalling the first expression forω++ in (44), we note that this equation is actually
just the equation

D++e−−β̆
ᾰ

= −∂−
hᾰ
H++β̆−

with the connection acting in the gauge (38) onboth spinor indices ofe−−β̆
ᾰ

. Now in the
central basis this equation reads simply

∂++e−−β
α = −ϕᾰα ∂−

hᾰ
H++β̆−(ϕ−1)

β

β̆
, (A2)

a first-order linear equation which uniquely determinese−−β
α in terms ofϕ andH++β−,

which in turn are determined in terms of the arbitrary analytic prepotentialL+4 by virtue
of (41), (45).

For the Taub-NUT example of section 9, explicit integration of (A2) yields

e−−β
α = 4g

(1 − gr2)

(
X−−{(1 − 1

2gr
2)2 − 1

2 − 4g2ρ2}

+ σ3(
1
2ρ

−−I − 2gρX−−)+ 2gρρ−−I
)β
α
, (A3)

whereX−− is the matrix in (B2).
From (34) we obtain an expression for the connection inD−

β̆
:

ω
−γ̆
β̆ᾰ

= ∂+
hᾰ
e
−−γ̆
β̆

, (A4)

for which (35) implies the constraintω−γ̆
[β̆ᾰ]

= 0. The latter together with the constraint of
tracelessness of this SU(2) connection have a local solution in terms of an unconstrained
non-analytic prepotentiale−4 = e−4(x±

h , u
±), in terms of which

e
−−γ̆
β̆

= ∂+
hβ̆
∂

+γ̆
h e−4,

ω
−γ̆
β̆ᾰ

= ∂+
hᾰ
∂+
hβ̆
∂

+γ̆
h e−4 .

(A5)

The only remaining equation for the connection fields is the equation (36), which is an
identity by virtue of the other equations. Namely, acting on (A1) by∂+

β̆
we obtain precisely

(36) with the connection components written in the forms (44) and (A4).
All equations in the CR system therefore allow solution in terms of the unconstrained

analytic prepotentialL+4, proving our claim.

Appendix B. The quadratic matrices X±±,X±∓

The explicit solubility of the example of section 9 relies on remarkable properties of matrices
quadratic in the central coordinatesxµ± ≡ xµau±

a . Consider

X++ =
(
x1+x2+ −x2+x2+

x1+x1+ −x2+x1+

)
.
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This is actually the harmonic derivative of two possible matrices,X+−, X−+ ,

X++ = ∂++X+− = ∂++X−+ ;

X+− =
(
x1+x2− −x2+x2−

x1+x1− −x2+x1−

)
, X−+ =

(
x1−x2+ −x2−x2+

x1−x1+ −x2−x1+

)
,

together with which it obeys the algebra

X++X++ = X+−X++ = X++X−+ = 0

X+−X−+ = X−+X+− = 0

X++X+− = − 1
2r

2X++ = −X−+X++

X+−X+− = − 1
2r

2X+− , X−+X−+ = 1
2r

2X−+

X+− −X−+ = − 1
2r

2I.

(B1)

wherer2 ≡ 2(x1−x2+ − x1+x2−). Furthermore, the matrix

X−− =
(
x1−x2− −x2−x2−

x1−x1− −x2−x1−

)
(B2)

satisfies the equation∂++X−− = X+− +X−+.
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